Wp/iba/Integer

< Wp | iba
Wp > iba > Integer

Integer nya lumur kusung (0), lumur natural positif (1, 2, 3, . . .), tauka negasyen ari lumur natural positif (−1, −2, −3, . . .).[1] Negasyen tauka pemali penambah lumur natural positif dikumbai mega enggau nama lumur negatif.[2] Set semua integer suah ditanda enggau urup tebal Z tauka urup tebal papan chelum .[3][4].

Set integer dalam taris lumur

Set lumur natural nya siti subset ari , ti nyadi subset ari semua lumur rasional , ke nyadi subset lumur bendar .[lower-alpha 1] Baka set lumur natural, set integer nya ulih dikira sereta nadai sekat. Integer tau dianggap nyadi lumur bendar ti ulih ditulis enggau nadai komponen pemechah. Ngambika chunto, 21, 4, 0, enggau −2048 nya integer, tang 9.75, ⁠5+1/2, 5/4 sereta 2 nya ukai integer.[8]

Integer nya nyadika raban ti pemadu mit enggau kelang ti pemadu mit ti ngundan lumur natural. Dalam teori lumur aljebra, integer kadang-kadang dikualifikasyenka nyadi integer rasional dikena mida iya ari integer aljebra ti agi jeneral. Ke bendar iya, lumur bulat (rasional) nya lumur bulat aljebra ti mega nyadi lumur rasional.

Penerang

Malin

  1. Science and Technology Encyclopedia. University of Chicago Press. September 2000. p. 280. ISBN 978-0-226-74267-0.
  2. Hillman, Abraham P.; Alexanderson, Gerald L. (1963). Algebra and trigonometry;. Boston: Allyn and Bacon.
  3. Cite error: Invalid <ref> tag; no text was provided for refs named earliest
  4. Peter Jephson Cameron (1998). Introduction to Algebra. Oxford University Press. p. 4. ISBN 978-0-19-850195-4. Diarkib ari asal ba 2016-12-08. Diambi 2016-02-15.
  5. Partee, Barbara H.; Meulen, Alice ter; Wall, Robert E. (30 April 1990). Mathematical Methods in Linguistics. Springer Science & Business Media. pp. 78–82. ISBN 978-90-277-2245-4. The natural numbers are not themselves a subset of this set-theoretic representation of the integers. Rather, the set of all integers contains a subset consisting of the positive integers and zero which is isomorphic to the set of natural numbers.
  6. Wohlgemuth, Andrew (10 June 2014). Introduction to Proof in Abstract Mathematics. Courier Corporation. p. 237. ISBN 978-0-486-14168-8.
  7. Polkinghorne, John (19 May 2011). Meaning in Mathematics. OUP Oxford. p. 68. ISBN 978-0-19-162189-5.
  8. Prep, Kaplan Test (4 June 2019). GMAT Complete 2020: The Ultimate in Comprehensive Self-Study for GMAT. Simon and Schuster. ISBN 978-1-5062-4844-8.

Nota


Cite error: <ref> tags exist for a group named "lower-alpha", but no corresponding <references group="lower-alpha"/> tag was found